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ABSTRACT 
 
 We present a simulation technique that allows the calculation of a phase coexistence curve 
from a single nonequilibrium molecular dynamics (MD) simulation. The approach is based on 
the simultaneous simulation of two coexisting phases, each in its own computational cell, and the 
integration of the relevant Clausius-Clapeyron equation starting from a known coexistence point. 
As an illustration of the effectiveness of our approach we apply the method to explore the 
melting curve in the Lennard-Jones phase diagram.    
 
INTRODUCTION 
 
 One of the most challenging applications of computer simulation techniques concerns the 
determination of the phase behavior of a substance of interest. Given that the size of the systems 
studied in typical simulations is relatively small, a direct observation of phase coexistence in a 
computational cell is problematic due to the interface dividing the coexisting phases. In order to 
avoid such problems one usually adopts an indirect route in which the coexistence conditions are 
determined by considering the thermodynamic properties of each phase individually. An 
effective methodology for the computation of phase equilibria using such an approach is the 
Clausius-Clapeyron integration (CCI) method introduced by Kofke [1-5], in which the relevant 
Clausius-Clapeyron differential equation is solved numerically. For coexistence in the 
pressure/temperature domain, for example, this equation has the well-known form 
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∆
∆= ,                                                                 (1) 

 
where H∆ and V∆ are, respectively, the molar enthalpy and volume differences between two 
coexisting phases A and B. In Kofke’s implementation this equation is discretized and integrated 
numerically by conducting a series of equilibrium simulations along which the temperature (or 
pressure) varies on a discrete mesh. Each simulation considers both phases simultaneously, in 
separate computational cells, and measures the differences H∆ and ∆V corresponding to the 
current values of temperature and pressure. Given an initial coexistence condition, the rest of the 
coexistence curve is then mapped out by updating the coexistence pressure (or temperature) 
according to Eq. (1) using a predictor-corrector integrator.  In this fashion each equilibrium 
simulation provides one new point on the coexistence curve. 



 In this paper we present an alternative implementation of the CCI concept which enables the 
determination of an entire coexistence curve from only one nonequilibrium simulation. The 
approach is based on the Reversible-Scaling free-energy method [6-8] and replaces the 
integration along a discrete series of equilibrium states by one along a quasi-continuous sequence 
of nonequilibrium states. We illustrate the effectiveness of our approach by exploring the melting 
curve in the Lennard-Jones phase diagram.  
 
METHODOLOGY 
 
Reversible Scaling 
 
 The Reversible-Scaling (RS) technique [6-8] is based on an equivalence relation between the 
partition functions of a given system of interest and its associated scaled system, whose potential 
energy function is constructed by scaling the original one by a positive factor λ: 
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where the ir

r

denote the N particle positions. Considering the isobaric-isothermal partition 
functions [9] for both systems one finds that their configurational Gibbs free energies are related 
according to 
 

);,,(),,( 00
0

0 λλ TPNG
T

T
TPNG scaledsystem = ,                                     (3) 

where TP  and 0 are the pressure and temperature in the system of interest, and 

TTPPscaled λλ == 00  and  are the corresponding values in the scaled system.  This relation 
implies that the problem of computing the free energy of the system of interest as a function of 
temperature T is completely equivalent to the problem of evaluating the free energy of the scaled 
system as a function of the scaling parameter λ at a constant temperature 0T . 

 The latter can be addressed very effectively within the framework of the coupling parameter 
formalism of thermodynamic integration (TI) [9], according to which the free energy of the 
scaled system may be written as 
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where )/,,();,,( 0000 refsystemrefrefscaled TPNGTPNG λλλ ≡  is a reference free-energy value 

assumed to be known beforehand, and where 
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is the cumulative reversible work function associated with the scaling coordinate λ. Here, 

systemUV  and  denote ensemble averages of, respectively, the volume and potential energy 

over the );,,( 00 λλ TPN ensemble for the scaled system. 

 The function )(λrevW  can be estimated very efficiently using the adiabatic switching (AS) 

nonequilibrium method [8], in which the scaling parameter )(tλλ =  is a function of time that 

varies continuously between initial and final values refλλ =)0(  and fst λλ =)( , st  being the 

switching time of the AS simulation. In this manner one obtains a dynamical estimator for the 
function )(λrevW  from a single AS simulation of duration ts : 
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where the ensemble averages of the volume and potential energy in Eq. (5) have been replaced 
by their instantaneous values during the AS simulation. Evidently, [ ])(tWdyn λ  is a biased 

estimator for )(λrevW  since the AS process is irreversible in nature and subject to dissipative 

entropy production. Accordingly, the dynamical estimator (8) will be rigorously equal to Wrev(λ) 
only in the limit ∞→st  when the process becomes ideally adiabatic. In practice, however, the 

convergence of [ ])(tWdyn λ  with increasing st  is remarkably rapid, allowing an accurate 

determination of  Wrev(λ) and ),,( 0 TPNGsystem  (through Eqs. (4) and (3)), from a single and 

relatively short RS-AS simulation. Moreover, any small systematic errors caused by finite 
switching times can be eliminated using a simple hysteresis analysis procedure [10,11]. 
  
Clausius-Clapeyron Reversible Scaling 
 
 The RS approach can be extended in a manner that allows efficient and accurate integration 
of the Clausius-Clapeyron equation for two coexisting phases. In analogy to Eq. (4), the free 
energies of the scaled systems associated with the phases A and B can be written as 
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where the pressure 0P  in the systems of interest now varies explicitly as a function of 

temperature (and thus as a function of λ in the corresponding scaled systems). The corresponding 
cumulative reversible work functions for both phases are given by 
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Now, suppose the phases A and B are in coexistence at some temperature refref TT λ/0=  and 

pressure refP . In order to maintain the phases in coexistence upon an infinitesimal change λd in 



the scaled systems, the associated reversible work increments for phases A and B must be equal. 
In order to satisfy this condition, the derivative λddP /0 must obey 
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which is simply the Clausius-Clapeyron equation within the RS formulation. Implementing Eq. 
(9) within the AS scheme then leads to a dynamical “equation of motion” for the evolution of the 
coexistence pressure: 
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Given an initial coexistence condition, the integration of this equation then provides a dynamical 
estimator for an entire coexistence curve from a single RS-AS simulation in which both phases 
are considered simultaneously.  
 
APPLICATION: MELTING CURVE IN LENNARD-JONES SYSTEM 
 
 As an illustration of the effectiveness of the Clausius-Clapeyron RS-AS technique, we 
computed the fcc solid-liquid coexistence boundary in the Lennard-Jones (LJ) system. For both 
phases we employed cubic computational cells containing 500 particles subject to standard 
periodic boundary conditions. The cut-off radius was selected at σ5.3=cr  and standard long-
range corrections were applied to the measured energies and pressures [9]. The MD simulations 
were carried out using isobaric-isothermal dynamics based on a combination of the Nosé-Hoover 
thermostat and Andersen barostat. The corresponding equations of motion were integrated using 
the leapfrog algorithm with a time step 002.0=∆t  (LJ units).  
 First, we determined an initial point on the melting line by computing the Gibbs free energies 
of the LJ solid and liquid as a function of temperature at a pressure 3

0  / 1 σε=P using the RS-AS 

technique. The functional form of )(tλ was chosen to be linear in t. Figure 1 shows the 
converged results for the configurational Gibbs free energies per particle as a function 
of temperature, obtained using switching times of 10=st  ( 3105 ⋅ MD steps) and 50=st  

( 4105.2 ⋅  steps) LJ time units for the solid and liquid phases, respectively. As a check we 
conducted independent free-energy computations at the upper and lower limits of the 
temperature intervals covered by the RS-AS simulations. The results of these calculations, shown 
as the symbols in the plot, indicate an excellent agreement with the RS-AS data. From the 
crossing of both free-energy curves the coexistence condition for the pressure 3

0  / 1 σε=P  was 

found at a temperature Bm kT /  )001.0777.0( ε±= . 
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Figure 1.  Configurational Gibbs free energy as a function of temperature for the Lennard-Jones FCC and liquid 
phases. 

 Starting from this initial coexistence point we applied the Clausius-Clapeyron RS-AS 
technique to extrapolate the melting line to the temperature T = 7.777. Figure 2 shows the results 
obtained for three values of the switching time: 5=st  ( full curve, 3101⋅ MD steps), 20=st  

(dotted curve, 4101⋅ MD steps), and 200=st  ( dashed curve, 5101⋅ MD steps). For comparison, 
the equilibrium CCI results from [4]  (obtained for 500 and 432 particles in the solid and liquid 
phases, respectively) are shown as the square symbols. 
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Figure 2.  Clausius-Clapeyron RS-AS melting curves for the LJ system. Symbols represent data from  [4]. 



 The agreement between the Clausius-Clapeyron RS-AS results and those obtained in [4] is 
excellent for all temperatures below T = 4.0. For higher temperatures our results predict a 
slightly higher coexistence pressure, reaching a discrepancy of 2.5 % at T = 7.61. This 
discrepancy is possibly related to the fact that our calculations were carried out using a fixed cut-
off radius for the potential, while the results in [4] were based on a variable cut-off radius. 
Considering the computational overhead associated with both methods, the Clausius-Clapeyron 
RS-AS technique is found to be considerably more efficient than the equilibrium method used in 
[4]. Given that each data point in the calculations of [4] required at least 4102.4 ⋅ Monte Carlo 
(MC) trials, the nonequilibrium implementation of CCI is about a factor 15 less expensive, 
showing a converged coexistence boundary using only 4101⋅ MD steps to cover the entire 
temperature range between T = 0.777 and T = 7.777. 

 
SUMMARY 
 
 We presented a new implementation of the Clausius-Clapeyron integration procedure for the 
determination of phase coexistence boundaries using atomistic simulation techniques. Our 
approach is based on the Reversible-Scaling free energy method and allows the calculation of an 
entire coexistence curve from a single, relatively short nonequilibrium simulation. Application of 
the technique to the calculation of the melting curve in the Lennard-Jones phase diagram shows 
that the present nonequilibrium method is significantly less expensive than the original 
equilibrium implementation. Given the demonstrated efficiency, the method appears to be useful 
for the calculation of first-principles coexistence curves.   
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